下载全文
巧妙地记住一些常用的数值,数学就会变得简单而有趣,连奥数都不在话下了。这些数值背下来,孩子以后到了中学,你会发现用处更大了呢~小编在这里整理了相关资料,希望能帮助到那您。
小升初数学必备数值
常用小数、分数的转化
1/2 =0.5=50%
1/3 ≈0.333 =33.3%
2/3 ≈0.667=66.7%
1/4 =0.25=25%
3/4 =0.75=75%
1/5 =0.2=20%
1/6 ≈0.167=16.7%
5/6 ≈ 0.833=83.3%
1/8 =0.125=12.5%
3/8 =0.375=37.5%
5/8 =0.625=62.5%
7/8 =0.875=87.5%
1/9 ≈ 0.111=11.1%
1/10 =0.1=10%
1/20=0.05=5%
1/16 =0.0625=6.25%
1/32 =0.03125=3.125%
1/64 =0.015625=1.5625%
1/7 =0.142857142857…≈0.143 =14.3%
小数和分数的转化在小学高年级的数学中使用得比较多,特别是学习了分数乘法之后,记住这些转化的常用数值真的是妙算啊!
常用圆周率计算
3.14×1=3.14
3.14×2=6.28
3.14×3=9.42
3.14×4=12.56
3.14×5=15.70
3.14×6=18.84
3.14×7=21.98
3.14×8=25.12
3.14×9=28.26
3.14×10=31.40
3.14×11=34.54
3.14×12=37.68
3.14×16=50.24
3.14×18=56.52
3.14×20=62.80
3.14×25=78.50
3.14×32=100.48
3.14×36=113.04
3.14×49=153.86
3.14×64=200.96
3.14×81=254.34
3.14×121=379.94
小编觉得前面10个计算式子是运算中比较常用的,后面的,爸妈可以让孩子们适当背一下,锻炼大脑哦!不过圆周率计算如果实在背不下来,爸妈们千万不要勉强哦,只要记住3.14计算也是很容易的。
常用的完全平方数
12=1
22=4
32=9
42=16
52=25
62=36
72=49
82=64
92=81
102=100
112=121
122=144
132=169
142=196
152=225
162=256
172=289
182=324
192=361
202=400
完全平方数在数学运用中使用的频率很高哦,小编建议小朋友们把1-20的平方数都记下来,可以大大提高数学运算的速度呢。
常用的立方数
13=1
23=8
33=27
43=64
53=125
63=216
73=343
83=512
93=729
103=1000
113=1331
123=1728
133=2197
143=2744
153=3375
163=4096
173=4913
183=5832
193=6859
203=8000
前面标注加粗的立方数,小朋友们尽量记下来哦,因为小编使用这些公式的时候,可以很快就挑选出正确的答案,做数学卷子更快了。
常用单位换算
长度单位换算
1千米=1000米
1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
1米=100厘米
1千米=100000厘米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方千米=1000000平方米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
1升=1000立方厘米
1立方分米=1000毫升
质量单位换算
1吨=1000 千克
1千克=1000克
人民币单位换算 1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年
1年=12月
大月(31天)有:1、3、5、7、8、10、12月
小月(30天)的有:4、6、9、11月
平年2月28天
闰年2月29天
平年全年365天
闰年全年366天
1日=24小时
1时=60分
1分=60秒
1时=3600秒
小升初数学必考难点详解
1钟表问题
钟表行程问题是研究钟表上的时针和分针关系的问题,常见的有两种:
⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;
⑵研究有关时间误差的问题。
在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.
例题
例题1:
4时与5时之间,什么时刻时钟的分针和时针反向成一条直线?
解答:我们从4时开始让时针和分针追及,分针和时针成一直线,分针比时针多走50格,每分钟多走1-1/12=11/12格,则50÷11/12=54又6/11分
答:4点54又6/11分时钟的分针和时针成一直线。
例题2:
当钟表上4时10分时,时针与分针的夹角是多少度?
解答:分针每分钟走360÷60=6度,时针每分钟走30度÷60=0.5度,4点整分针与时针相差120度,从4点开始追及,10分钟后分针比时针多走(6-0.5)×10=55度。
120度-55度=65度。
答:当钟表上4时10分时,时针与分针的夹角是65度。
2扶梯问题
与流水行船不同的是,自动扶梯上的行走速度有两种度量,一种是“单位时间运动了多少米”,一种是“单位时间走了多少级台阶”,这两种速度看似形同,实则不等,拿流水行船问题作比较,“单位时间运动了多少米”对应的是流水行程问题中的“船只顺(逆)水速度”,而“单位时间走了多少级台阶”对应的是“船只静水速度”,一般奥数题目涉及自动扶梯的问题中更多的只出现后一种速度,即“单位时间走了多少级台阶”,所以处理数量关系的时候要非常小心,理清了各种数量关系,自动扶梯上的行程问题会变得非常简单。
例题
例题1:小偷与警察相隔30秒先后逆向跑上一自动扶梯,小偷每秒可跨越3级阶梯,警察每秒可跨越4级阶梯。已知该自动扶梯共有150级阶梯,每秒运行1.5级阶梯,问警察能否在自动扶梯上抓住小偷?答:_____。
分析:全部以地板为参照物,那么小偷速度为每秒1.5级阶梯,警察速度为每秒2.5级阶梯。警察跑上电梯时相距小偷1.5×30=45级阶梯,警察追上小偷需要45秒,在这45秒内,小偷可以跑上1.5×45=67.5级阶梯,那么追上小偷后,小偷在第112~第113级阶梯之间,没有超过150,所以警察能在自动扶梯上抓住小偷。
例题2:在商场里甲开始乘自动扶梯从一楼到二楼,并在上向上走,同时乙站在速度相等的并排扶梯从二层到一层。当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,那么,自动扶梯不动时从下到上要走多少级?
分析:向上走速度为甲和自动扶梯的速度和,向下走速度为甲和自动扶梯的速度差。
当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,60÷80=3/4,这说明甲乙处于同一高度时,甲的高度是两层总高度的3/4。
则甲和自动扶梯的速度和与自动扶梯的速度之比是3/4:(1-3/4)=3:1,即甲的速度与自动扶梯速度之比2:1,甲和自动扶梯的速度差与自动扶梯的速度相等。向下走速度向上走速度的1/3,所用时间为向上走的3倍,则甲向下走的台阶数就是向上走台阶数的3倍.因此甲向上走了80÷(3+1)=20级台阶。甲的速度与自动扶梯速度之比2:1,甲走20级台阶的同时自动扶梯向上移动了10级台阶,因此如果自动扶梯不动,甲从下到上要走20+10=30级台阶。
例题3:商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?
分析:因为男孩的速度是女孩的2倍,所以男孩走80级到达楼下与女孩走40级到达楼上所用时间相同,在这段时间中,自动扶梯向上运行了(80-40)÷2=20(级)所以扶梯可见部分有80-20=60(级)。
3浓度问题
例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?
解:(1)需要加水多少克? 50×16%÷10%-50=30(克)
(2)需要加糖多少克? 50×(1-16%)÷(1-30%)-50
=10(克)
答:(1)需要加水30克,(2)需要加糖10克。
例2 我们把50%的盐水1千克与20%的盐水4千克混合,求混合后溶液浓度?
求出第一份溶液中溶质(即食盐)质量,50%×1=0.5千克;
第二份溶液中溶质质量,20%×4=0.8千克;
则总溶质质量为0.5+0.8=1.3千克;
总溶液质量为1+4=5千克。
于是,混合后溶液的浓度为:=26%。
例3 有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
解析:根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。
原来糖水中水的质量:600×(1-7%)=558(克)
现在糖水的质量 :558÷(1-10%)=620(克)
加入糖的质量 :620-600=20(克)
答:需要加入20克糖。
例4 现有浓度为10%的盐水20千克。再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?
解析:这是一个溶液混合问题。混合前、后溶液的浓度改变了,但总体上溶质及溶液的总质量没有改变。所以,混合前两种溶液中溶质的和等于混合后溶液中的溶质的量。
20千克10%的盐水中含盐的质量:20×10%=2(千克)
混合成22%时,20千克溶液中含盐的质量:20×22%=404(千克)
需加30%盐水溶液的质量:(4.4-2)÷(30%-22%)=30(千克)
答:需加入30千克浓度为30%的盐水,可以得到浓度为22%的盐水。
例5 将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水和5%的盐水各多少克?
解析:根据题意,将20%的盐水与5%的盐水混合配成15%的盐水,说明混合前两种盐水中盐的质量和与混合后盐水中盐的质量是相等的。可根据这一数量间的相等关系列方程解答。
解:设20%的盐水需x克,则5%的盐水为600-x克,那么
20%x+(600-x)×5%=600×15%
X =400
600-400=200(克)
答:需要20%的盐水400克,5%的盐水200克。
小升初考试必备数学数值与难点详解相关文章:
1.小升初数学必考难点详解
2.小升初考试必备数学10大难点和34个重难点公式
3.小升初数学考试易错点大总结
4.小升初数学衔接学习方法及复习重点
5.小升初数学学习方法
VIP会员可免费下载与转存
加入会员打开微信扫码支付