好课件网>数学>数学怎么养成良好的学习习惯与初中数学9大经典解题方法

下载全文

数学怎么养成良好的学习习惯与初中数学9大经典解题方法

  如何学好初中的数学怎么养成良好的学习习惯。养成良好的学习习惯对学好各个学科都非常重要,对于初中数学,怎么养成良好的学习习惯呢?小编整理了相关资料,希望能帮助到您。

  数学怎么养成良好的学习习惯

  提高初中数学计算正确率的窍门

  真正的去理解解题方法,做完一道题目之后当堂回顾,把解题思路复述出来,并将做错的题抄在错题本上,经过一段时间的努力,一定能将解题的错误率降低,并养成良好的学习习惯。所以,我们经常说,学数学很容易,秘诀就是:会做的做对,错过的不要再错如何提高中考数学的计算的正确率,以下有四种方法以供借鉴:

  第一:要对计算引起足够的重视

  总以为计算式题比分析应用题容易得多,对一些法则、定律等知识学得比较扎实,计算是件轻而易举的事情,因而在计算时或过于自信,或注意力不能集中,结果错误百出。

  其实,计算正确并不是一件很容易的事。例如计算一道像37×54这样简单的式题,要用到乘法、加法的运算法则,经过四次表内乘法和四次一位数加法才能完成。至于计算一道分数、小数四则混合运算式题,需要用到运算顺序、运算定律和四则运算的法则等大量的知识,经过数十次基本计算。在这个复杂的过程中,稍有粗心大意就会使全题计算错误。

  因此,计算时来不得半点马虎。

  第二:要按照计算的一般顺序进行

  首先,弄清题意,看看有没有简单方法、得数保留几位小数等特别要求;

  其次,观察题目特点,看看几步运算,有无简便算法;

  再次,确定运算顺序。在此基础上利用有关法则、定律进行计算;

  最后,要仔细检查,看有无错抄、漏抄、算错现象。

  第三:要养成认真演算的好习惯

  有些同学由于演算不认真而出现错误。数据写不清,辨认失误。打草稿时不能按照一定的顺序排列竖式,出现上下粘连,左右不分,再加上相同数位不对齐,既不便于检查,又极易看错数据。所以一定要养成有序排列竖式,认真书写数字的良好习惯。

  第四:不能盲目追求速度

  计算又对又快是最理想的目标,但必须知道计算正确是前提条件,是最基本的要求,没有正确作基础的高速度是没有任何价值的。所以,宁愿计算的速度慢一些,也要保证计算正确,提高计算的正确率。

  初中数学9大经典解题方法

  1、配方法

  通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法

  因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法

  换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4、判别式法与韦达定理

  一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

  韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

  5、待定系数法

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

  7、面积法

  平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

  用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

  8、几何变换法

  在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

  几何变换包括:(1)平移;(2)旋转;(3)对称。

  9、反证法

  反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

  反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

  归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。


数学怎么养成良好的学习习惯与初中数学9大经典解题方法相关文章:

1.2020中考数学10大解题方法攻略,初中数学学习方法

2.初中数学学习方法总结与初中数学解题方法大全

3.实用的初中数学学习方法,提高数学成绩的四大技巧

4.初中数学的学习方法,这3个技巧提高你的数学成绩

5.初中数学学习方法有哪些

×

您可以

加入会员无限下载
微信支付

打开微信扫码支付

×

由于资源过大,请根据需求自行前往百度网盘提取

微信安全登录
打开微信扫码即可登录或注册
×