好课件网>数学>高二数学基础知识点

下载全文

高二数学基础知识点

我们的学习必须与人合作,才能更加富有成果。古人说:“独学而无友,则孤陋而寡闻。”学习中,通过全作,互相交流,互相启发互相帮助,弥补个人知识的不足,从而获得更多的知识,提高我们解决问题的能力。下面是小编给大家带来的高二数学基础知识点,希望大家能够喜欢!

高二数学基础知识点1

1.求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2.求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

(4)检查f(x)的符号并由表格判断极值。

3.求函数的值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。

求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。

4.解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5.导数在实际生活中的应用:

实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。

高二数学基础知识点2

直线、平面、简单几何体:

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行于x轴的线段长不变,平行于y轴的线段长减半.

(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

3、表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S=;②体积:V=

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

⑵直线与平面所成的角:直线与射影所成的角

高二数学基础知识点3

1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

向量公式:

1.单位向量:单位向量a0=向量a/|向量a|

2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)

3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根号(x1平方+y1平方)_根号(x2平方+y2平方)

5.空间向量:同上推论(提示:向量a={x,y,z})

6.充要条件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方


高二数学基础知识点相关文章

最新高二数学基础知识点归纳

高二数学知识点总结

高二数学知识点归纳总结

高二数学知识点整理

高二数学考点知识点总结复习大纲

高二数学知识点归纳

高二数学整体知识总结

高二数学必背知识点总结

高二数学知识点总结选修2

×

您可以

加入会员无限下载
微信支付

打开微信扫码支付

×

由于资源过大,请根据需求自行前往百度网盘提取

微信安全登录
打开微信扫码即可登录或注册
×