好课件网>数学>高三年级数学易错知识点大全

下载全文

高三年级数学易错知识点大全

机会只不过是相对于充分准备而又善于创造机会的人而言的。没有机会,就要创造机会;有了机会,就要巧妙地抓住机会,而高考就是你走上成功之路的第一个机会。接下来是小编为大家整理的高三数学易错知识点,希望大家喜欢!

三年级数学易错知识点大全篇一

变化前的点坐标(x,y)

坐标变化

变化后的点坐标

图形变化平移横坐标不变,纵坐标加上(或减去)n(n>0)个单位长度

(x,y+n)或(x,y-n)

图形向上(或向下)平移了n个单位长度

纵坐标不变,横坐标加上(或减去)n(n>0)个单位长度

(x+n,y)或(x-n,y)

图形向右(或向左)平移了n个单位长度伸长横坐标不变,纵坐标扩大n(n>1)倍(x,ny)图形被纵向拉长为原来的n倍

纵坐标不变,横坐标扩大n(n>1)倍(nx,y)图形被横向拉长为原来的n倍压缩横坐标不变,纵坐标缩小n(n>1)倍(x,)图形被纵向缩短为原来的

纵坐标不变,横坐标缩小n(n>1)倍(,y)图形被横向缩短为原来的放大横纵坐标同时扩大n(n>1)倍(nx,ny)图形变为原来的n2倍缩小横纵坐标同时缩小n(n>1)倍(,)图形变为原来的

78、求与几何图形联系的特殊点的坐标,往往是向x轴或y轴引垂线,转化为求线段的长,再根据点所在的象限,醒上相应的符号。求坐标分两种情况:(1)求交点,如直线与直线的交点;(2)求距离,再将距离换算成坐标,通常作x轴或y轴的垂线,再解直角三角形。

高三年级数学易错知识点大全篇

不等式分类:

不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

 高三年级数学易错知识点大全篇

一、柱、锥、台、球的结构特征

结构特征

图例

棱柱

(1)两底面相互平行,其余各面都是平行四边形;

(2)侧棱平行且相等.

圆柱

(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;

(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.

棱锥

(1)底面是多边形,各侧面均是三角形;

(2)各侧面有一个公共顶点.

圆锥

(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.

棱台

(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.

圆台

(1)两底面相互平行;

(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.

(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.

二、简单组合体的结构特征

三、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

四、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

五、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,h'为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:

高三年级数学易错知识点大全篇

1、基本概念:

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例

fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

3.1.3概率的基本性质

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

3.2.1—3.2.2古典概型及随机数的产生

1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;

①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)

3.3.1—3.3.2几何概型及均匀随机数的产生

1、基本概念:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

(2)几何概型的概率公式:

P(A)=

(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

高三年级数学易错知识点大全篇

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

⑶若{an}{bn}为等差数列,则{an±bn}与{kan+bn}(k、b为非零常数)也是等差数列.

⑷对任何m、n,在等差数列中有:an=am+(n-m)d(m、n∈N+),特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

⑸、一般地,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq.

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

(7)下表成等差数列且公差为m的项ak.ak+m.ak+2m.....(k,m∈N+)组成公差为md的等差数列。

⑻在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

高三年级数学易错知识点大全相关文章

1.高考数学18个易错知识点总结

2.高三数学易错点集锦

3.高考数学18个易错知识点及各分段学生的提分秘籍和答题模板

4.高考数学易错知识点大全

5.高三数学78个数学易错易混知识点与必考大题

6.高三数学78个数学易错易混知识点与必考大题(2)

7.高考数学易错知识点归纳

8.高考数学易错知识点整理

9.考数学易错知识点归纳

10.高考数学易错知识点复习

×

您可以

加入会员无限下载
微信支付

打开微信扫码支付

×

由于资源过大,请根据需求自行前往百度网盘提取

微信安全登录
打开微信扫码即可登录或注册
×