好课件网>数学>精选高三数学知识点归纳

下载全文

精选高三数学知识点归纳

总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,下面是小编给大家带来的精选高三数学知识点归纳,以供大家参考!

精选高三数学知识点归纳

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的`根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

高三数学知识点归纳总结

付正军:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节,主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二个是平面向量和三角函数。重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三,是数列,数列这个板块,重点考两个方面:一个通项;一个是求和。

第四,空间向量和立体几何。在里面重点考察两个方面:一个是证明;一个是计算。

第五,概率和统计,这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。

第六,解析几何,这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20__年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七,押轴题,考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高三数学必修三知识点整理

(1)赋值语句:在表述一个算法时,经常要引入变量,并赋给该变量一个值,用来表明赋给某一个变量的一个具体的确定值的语句叫做赋值语句。

赋值语句的一般格式:变量名表达式

①“=”的意义和作用:赋值语句中的“=”号,称作赋值号。

②赋值语句的作用:先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值。

③关于赋值语句,需要注意几点:

ⅰ赋值号左边只能是变量名,而不是表达式。例如3.6=_,5=y;都是错误的.

ⅱ赋值号左右不能对换:赋值语句是将赋值号右边的表达式赋值给赋值号左边的变量,例如:Y=_,表示用_的值替代变量Y原先的取值,不能改写成_=Y,因为后者表示用Y的值替代变量_的值。

ⅲ不能利用赋值语句进行代数式(或符号)的演算:在赋值语句中的赋值符号右边的表达式中的每一个变量都必须事先赋值给确定的值,不能用赋值语句进行如化简、因式分解等演算,在一个赋值语句中只能给一个变量赋值,不能出现两个或多个“=”。

ⅳ赋值号和数学中的等号的意义不同:赋值号左边的变量如果原来没有值,则在执行赋值语句后,获得一个值。例如_=5;Y=1等;如果原来已经有值,则执行该语句后,以赋值号右边表达式的值代替该变量的原值,即将原值“冲掉”。例如:N=N+1在数学中是不成立的,但在赋值语句中,意思是将N的原值加1再赋给N,即N的值增加1。

计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,就执行语句,如果条件不符合,则直接结束该条件语句,转而执行其他语句。其对应的程序框图为:(如下图)

条件语句的作用:在程序执行过程中,根据判断是否满足约定的条件而决定是否需要转换到何处去。需要计算机按条件进行分析、比较、判断,并按判断后的不同情况进行不同的处理。

(3)循环结构:

算法中的循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(for型)两种语句结构。即WHILE语句和UNTIL语句。

①WHILE语句的一般格式是:

其中循环体是由计算机反复执行的一组语句构成的。WHLIE后面的“条件”是用于控制计算机执行循环体或跳出循环体的。

当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与END之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到END语句后,接着执行END之后的语句。其对应的程序结构框图为:(如下图)

其对应的程序结构框图为:(如上图)

从for型循环结构分析,计算机执行该语句时,先把初始值赋给循环变量,记下终值和步长,并比较初值和中止,如果初值超过终值,就执行end以后的语句,否则执行for语句下面的语句,执行到end语句时,计算机让循环变量增加一个步长值,然后用增值后的循环变量值与终值比较,如果超过终值,就执行for语句以后的语句.是先执行循环体后进行条件判断的循环语句。

精选高三数学知识点归纳相关文章

高三数学各章节的知识点归纳

高三年级数学知识点归纳

高三数学单元必掌握的知识点归纳

高三数学知识点总结归纳

高三数学高考知识点总结

高三数学知识点归纳

高三数学的基础知识点归纳分析

高三数学辅导知识点归纳

高三数学第一轮复习知识点

高三数学都有哪些知识点

×

您可以

加入会员无限下载
微信支付

打开微信扫码支付

×

由于资源过大,请根据需求自行前往百度网盘提取

微信安全登录
打开微信扫码即可登录或注册
×