好课件网>数学>2020年高考数学各大题型答题模板

下载全文

2020年高考数学各大题型答题模板

  数学是高中生学习的最重要科目之一,数学的学习对于学生而言至关重要,数学成绩的好坏直接决定着你的总成绩的排名。以下是小编搜索整理的关于2020年高考数学各大题型的答题模板,供参考借鉴,希望对大家有所帮助!

  【选择题十大万能解题方法

  1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

  2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

  3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

  4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

  5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

  6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

  7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

  8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

  9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

  10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

  【填空题四大速解方法】

  直接法、特殊化法、数形结合法、等价转化法。

  【解答题答题模板】

  专题一、三角变换与三角函数的性质问题

  1、解题路线图

  ①不同角化同角

  ②降幂扩角

  ③化f(x)=Asin(ωx+φ)+h

  ④结合性质求解。

  2、构建答题模板

  ①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

  ②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

  ③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

  ④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

  专题二、解三角形问题

  1、解题路线图

  (1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

  (2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

  2、构建答题模板

  ①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

  ②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

  ③求结果。

  ④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

  专题三、数列的通项、求和问题

  1、解题路线图

  ①先求某一项,或者找到数列的关系式。

  ②求通项公式。

  ③求数列和通式。

  2、构建答题模板

  ①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

  ②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

  ③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

  ④写步骤:规范写出求和步骤。

  ⑤再反思:反思回顾,查看关键点、易错点及解题规范。

  专题四、利用空间向量求角问题

  1、解题路线图

  ①建立坐标系,并用坐标来表示向量。

  ②空间向量的坐标运算。

  ③用向量工具求空间的角和距离。

  2、构建答题模板

  ①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

  ②写坐标:建立空间直角坐标系,写出特征点坐标。

  ③求向量:求直线的方向向量或平面的法向量。

  ④求夹角:计算向量的夹角。

  ⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

  专题五、圆锥曲线中的范围问题

  点击查看:高中数学知识点总结及复习资料

  1、解题路线图

  ①设方程。

  ②解系数。

  ③得结论。

  2、构建答题模板

  ①提关系:从题设条件中提取不等关系式。

  ②找函数:用一个变量表示目标变量,代入不等关系式。

  ③得范围:通过求解含目标变量的不等式,得所求参数的范围。

  ④再回顾:注意目标变量的范围所受题中其他因素的制约。

  专题六、解析几何中的探索性问题

  1、解题路线图

  ①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)

  ②将上面的假设代入已知条件求解。

  ③得出结论。

  2、构建答题模板

  ①先假定:假设结论成立。

  ②再推理:以假设结论成立为条件,进行推理求解。

  ③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。

  ④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

  专题七、离散型随机变量的均值与方差

  1、解题路线图

  (1)①标记事件;②对事件分解;③计算概率。

  (2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

  2、构建答题模板

  ①定元:根据已知条件确定离散型随机变量的取值。

  ②定性:明确每个随机变量取值所对应的事件。

  ③定型:确定事件的概率模型和计算公式。

  ④计算:计算随机变量取每一个值的概率。

  ⑤列表:列出分布列。

  ⑥求解:根据均值、方差公式求解其值。

  专题八、函数的单调性、极值、最值问题

  1、解题路线图

  (1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。

  (2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

  2、构建答题模板

  ①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)

  ②解方程:解f′(x)=0,得方程的根。

  ③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

  ④得结论:从表格观察f(x)的单调性、极值、最值等。

  ⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。


2020年高考数学各大题型答题模板相关文章

1.2020高考数学的12个答题模板!

2.2020届高三数学解答题8个答题模板

3.2020年高考数学应试技巧

4.2020高三数学知识点总结与答题套路

5.2020年高考数学备考策略有哪些

6.2020高考数学的12种解题思路!

7.2020高考数学答题技巧

8.2020高考数学压轴题常用解题形式和解题策略分享

9.2020高考数学176个知识点题型归纳,高考数学如何达到及格

10.2020高考数学快速解题方法

×

您可以

加入会员无限下载
微信支付

打开微信扫码支付

×

由于资源过大,请根据需求自行前往百度网盘提取

微信安全登录
打开微信扫码即可登录或注册
×