好课件网>数学>2020年高考数学考点

下载全文

2020年高考数学考点

  数学是一切科学的基础,一不小心就容易出错,在高考上出错可就不好了。接下来是小编为大家整理的2020年高考数学考点,希望大家喜欢!

  2020年高考数学考点一

  圆台的概念:

  用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分。

  圆台:

  用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台,圆台同圆柱和圆锥一样也有轴、底面、侧面和母线,并且用圆台台轴的字母表示圆台。以直角梯形垂直于底边的腰所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.旋转轴叫做圆台的轴.直角梯形上、下底旋转所成的圆面称为圆台的上、下底面,另一腰旋转所成的曲面称为圆台的侧面,侧面上各个位置的直角梯形的腰称为圆台的母线,圆台的轴上的梯形的腰的长度叫做圆台的高,圆台的高也是上、下底面间的距离。圆台也可认为是圆锥被它的轴的两个垂直平面所截的部分,因此也可称为“截头圆锥”。

  2020年高考数学考点二

  三倍角公式

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  三倍角公式推导

  附推导:

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

  上下同除以cos^3(α),得:

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos^2(α)+(1-2sin^2(α))sinα

  =2sinα-2sin^3(α)+sinα-2sin^3(α)

  =3sinα-4sin^3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =(2cos^2(α)-1)cosα-2cosαsin^2(α)

  =2cos^3(α)-cosα+(2cosα-2cos^3(α))

  =4cos^3(α)-3cosα

  即

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  三倍角公式联想记忆

  ★记忆方法:谐音、联想

  正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

  余弦三倍角:4元3角 减 3元(减完之后还有“余”)

  ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

  ★另外的记忆方法:

  正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方

  余弦三倍角: 司令无山 与上同理

  和差化积公式

  三角函数的和差化积公式

  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  积化和差公式

  三角函数的积化和差公式

  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

  和差化积公式推导

  附推导:

  首先,我们知道sin(a+b)=sina_osb+cosa_inb,sin(a-b)=sina_osb-cosa_inb

  我们把两式相加就得到sin(a+b)+sin(a-b)=2sina_osb

  所以,sina_osb=(sin(a+b)+sin(a-b))/2

  同理,若把两式相减,就得到cosa_inb=(sin(a+b)-sin(a-b))/2

  同样的,我们还知道cos(a+b)=cosa_osb-sina_inb,cos(a-b)=cosa_osb+sina_inb

  所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa_osb

  所以我们就得到,cosa_osb=(cos(a+b)+cos(a-b))/2

  同理,两式相减我们就得到sina_inb=-(cos(a+b)-cos(a-b))/2

  这样,我们就得到了积化和差的四个公式:

  sina_osb=(sin(a+b)+sin(a-b))/2

  cosa_inb=(sin(a+b)-sin(a-b))/2

  cosa_osb=(cos(a+b)+cos(a-b))/2

  sina_inb=-(cos(a+b)-cos(a-b))/2

  有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。

  我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

  把a,b分别用x,y表示就可以得到和差化积的四个公式:

  sinx+siny=2sin((x+y)/2)_os((x-y)/2)

  sinx-siny=2cos((x+y)/2)_in((x-y)/2)

  cosx+cosy=2cos((x+y)/2)_os((x-y)/2)

  cosx-cosy=-2sin((x+y)/2)_in((x-y)/2)

  2020年高考数学考点三

  不等式恒成立问题致误

  解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法。通过最值产生结论。应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系。

  忽视三视图中的实、虚线致误

  三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽。

  面积体积计算转化不灵活致误

  面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法。(1)还台为锥的思想:这是处理台体时常用的思想方法。(2)割补法:求不规则图形面积或几何体体积时常用。(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积。(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解。

  随意推广平面几何中结论致误

  平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立。

  对折叠与展开问题认识不清致误

  折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化。

  点、线、面位置关系不清致误

  关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致。

  忽视斜率不存在致误

  在解决两直线平行的相关问题时,若利用l1∥l2?k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在。如果忽略k1,k2不存在的情况,就会导致错解。这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案。对于解决两直线垂直的相关问题时也有类似的情况。利用l1⊥l2?k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在。利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论。

  忽视零截距致误

  解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式。因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况。

  忽视圆锥曲线定义中条件致误

  利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件。如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|。如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支。

  误判直线与圆锥曲线位置关系

  过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系。在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性。

  两个计数原理不清致误

  分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理。

  排列、组合不分致误

  为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题。

  混淆项系数与二项式系数致误

  在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,...,n项的二项式系数分别是C0n,C1n,C2n,...,Cn-1n,而不是C1n,C2n,C3n,...,Cnn。而项的系数是二项式系数与其他数字因数的积。

  循环结束判断不准致误

  控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件。在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束。

  条件结构对条件判断不准致误

  条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值。

  复数的概念不清致误

  对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数。解决复数概念类试题要仔细区分以上概念差别,防止出错。另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错。


2020年高考数学考点相关文章

1.2020年高考复习攻略

2.高考数学必考知识点考点2020

3.2020高考数学必考知识点总结

4.高考数学考点2020总结

5.2020高考数学必考知识点

6.2020高考数学知识点总结

7.2020高考数学知识点

8.2020高考各科考点预测及备考建议

9.2020高考数学知识点归纳总结

10.2020高考数学学习与考场经验分享

×

您可以

加入会员无限下载
微信支付

打开微信扫码支付

×

由于资源过大,请根据需求自行前往百度网盘提取

微信安全登录
打开微信扫码即可登录或注册
×